
Due Sunday October 6, 2019 11:59pm via sakai

See the FAQ

Access control mechanisms in operating systems have evolved over the years to include
access control lists as well as a variety of mandatory access control (MAC) mechanisms,
including multi-level security, integrity levels, type enforcement, and limited forms of role-
based access control.

An operating system, however, can only deal with the users and resources it knows
about. It manages access between subjects (users) and objects (resources provided by the
system, such as files and devices). There’s an underlying assumption that these subjects
(users) have accounts on the system and the objects are known to the system.

For many applications, however, this is not the case. Applications may run as services
that are launched by a specific user. These services, in turn, interact with users who may very
well not have accounts on the system. For instance, you can log onto eBay and interact with it
but you don’t have an account on any of the systems that provide the eBay’s service.
Similarly, objects may be entities that are also unknown to the operating system, such as
fields or tables in a database or media streams.

This is a problem that affects many environments. Services often have to put together
their own solutions to manage their user accounts and access permissions (authorizations).
To address this, Google recently built Zanzibar: Google’s Consistent, Global Authorization
System. This provides a consistent, large-scale service for managing access control policies
that any application can use. Google uses this for services that include Calendar, Cloud,
Drive, Maps, Photos, and YouTube.

Your assignment is to design and implement an authentication and access control
(authorization) library that can be used by services that need to rely on their own set of users
rather than those who have accounts on the computer.

The access control system that you design will support:

Users

A collection of users and passwords that is used for authenticating users and for
members of user groups. For example

{ “anika”, “password” }, { “fang”, “123456”}, { “liam”, “abc123” }, …

User groups

A named collection of one or more users. For example,

Assignment 3

Introduction

Your Assignment

https://www.cs.rutgers.edu/~pxk/419/hw/a-3-faq.html
https://www.usenix.org/system/files/atc19-pang.pdf


admins = { "anika", "arun", "wei", "yash" }

premium_subscribers = { "fang", "noah", "riya" }

normal_subscribers = { "liam", "ravi", "olivia" }

Object groups

A named collection of one or more objects. Objects are any strings that will have
meaning to the application. For example, they might be file names, directory names,
subscribed features, media streams, etc. For example,

premium_content = { "hbo", "showtime", "disney" }

normal_content = { "cbs", "nbc", "fox", "abc", "wor", "pix", "pbs" }

Access permissions

A set of access rights that defines operations that user groups can perform on object
groups. For example,

"view": (premium_user, premium_content)

"delete": ("admins")

Note that the delete operation does not specify any objects but rather just an
operation that those in the user group admins may perform.

The above examples are conceptual. It is up to you to decide what storage structures are the
most convenient to implement.

You may work on this assignment individually or in a group of up to three members. If you
work in a group, please submit only one version. If you are not doing this as an individual
project, the standards for grading will be more stringent.

You may write this assignment in C, C++, Go, Java, or Python.

Your submissions will be tested on Rutgers iLab Linux systems. You can develop this on any
other system but you are responsible for making sure that it will work on the iLab systems.

Groups

Languages

Environment

Specif ications



Your implementation will be one that runs locally rather than as a network service and can be
incorporated within any application. For this assignment, you do not need to handle any
concurrent operations, so you need not implement locking.

Applications that use this service can be assumed to be trusted and trustworthy: they
will not try to use the interfaces incorrectly or subvert the system in any way.

User accounts and access permissions will be stored persistently in one or more files so
that they can be accessed again when the application (or another program using the same
authorization service) is run again.

You will write and submit several programs, each of which demonstrates a specific
function of the interface. These programs also make your program suitable for use and testing
by shell scripts.

API
This section describes the operations that you need to implement and the program that uses
them. It is up to you to define the appropriate return values, exceptions, and other details that
you feel are needed for your design.

AddUser(“user”, “password”)
Define a new user for the system along with the user’s password, both strings.

Test program:

AddUser myname mypassword 

The program should report an error if the user already exists.

Authenticate(“user”, “password”)
Validate a user’s password by passing the username and password, both strings.

Test program:

Authenticate myname mypassword 

The program should clearly report

Success

Failure: no such user

Failure: bad password

AddUserToGroup(“user”, “groupname”)
Add a user to a user group. If the group name does not exist, it is created. If a user does not
exist, the function should return an error.

Test program:

AddUserToGroup user usergroupname 

The program should report

Success & list all the users in that group

Failure if the user does not exist

AddObjectToGroup(“objectname”, “groupname”)
Add an object to an object group. If the group name does not exist, it is created. The object can
be any string.

Test program:

AddObjectToGroup object objectgroupname 

The program should report



Success & list all the objects in that group

AddAccess(“operation”, “usergroupname”, “objectgroupname”)
Define an access right: a string that defines an access permission of a user group to an object
group. The access permission can be an arbitrary string that makes sense to the service.

Test program:

AddAccess operation usergroupname [objectgroupname] 

The program will accept two or three strings. If objectgroupname is missing, it is considered
null and the specified user group is simply permi�ed access to the operation regardless of the
object (or an object may not make sense for that operation).

CanAccess(“operation”, “user”, “object”)
Test whether a user can perform a specified operation on an object. Optionally, an object may
be NULL, in which case CanAccess checks allows access if a user is part of a group for an
operation on which no object group was defined.

Test program:

CanAccess operation user [object] 

The program will check whether the user is allowed to perform the specified operation on the
object. That means that there exists a valid access right for an operation where the user is in
usergroupname and the object is in the corresponding objectgroupname.

As with AddAccess, the program will accept two or three strings. If object is missing, it is
considered null and the software allows access only if no object groups were defined for that
{operation, usergroupname} set.

Note that the parameters here are user names and object names, not user groups and
object groups.

Notes and assumptions
Note that this is not a complete interface. It is, for example, notably missing operations to
delete or change users, user groups, object groups, and permissions.

For simplicity of implementation, you may assume that a user is in exactly one group
and an object is exactly in one group. To handle the case of an empty object group, you may
store a placeholder string, such as “null” if that simplifies your implementation. You may do
the same with the object name.

Extra credit: Design your program so that this assumption need not apply: a user may be
a member of multiple groups and you need to check all appropriate access rights to see if a
user is allowed access to an object.

Hard-coding paths
Because the program will be run from other accounts, it is imperative that you do not include
hard-coded full pathnames in your program (e.g., do not use a rooted pathname like
“/ilab/users/pxk/src/access/tables”). You may store all your files in the current
directory or a subdirectory (e.g., “./tables/”) so that cleanup will be easy.

Your submission will generate six programs: AddUser, Authenticate, AddUserToGroup,
AddObjectToGroup, AddAccess, and CanAccess.

Documentation

What to submit



Documentation is crucial so that we don’t waste time trying to figure out how to compile and
run your program. At a minimum, specify clearly:

1. How to compile your programs (a Makefile would be useful). There should be NO
reliance on any IDE (e.g., eclipse) or third-party libraries. Instructions should specify
command-line commands only.

2. Any setup that is needed, such as creating a subdirectory to hold your access
permission files.

3. The usage of each program, including examples.

4. Example test scripts that you used to validate the program, testing error cases as well as
success cases.

If you are submi�ing a group project, also write up a discussion of your implementation,
including how you store the data for implementing this system.

Code
Submit only your documentation and source files (and Makefile, if you have one). DO NOT
submit any compiled files (e.g., object files, Java .class files or executables).

Make sure the instructions you submit to compile and run the programs makes sense.
Try to follow them based on a clean download of what you submi�ed. Be�er yet, have a
friend try to follow them.

© 2003-2019 Paul Krzyzanowski. All rights reserved.
For questions or comments about this site, contact Paul Krzyzanowski, webinfo@pk.org

The entire contents of this site are protected by copyright under national and international law. No part of this site may be copied, reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means whether electronic, mechanical or otherwise without the prior written consent of the copyright holder. If there is something on this
page that you want to use, please let me know.
Any opinions expressed on this page do not necessarily reflect the opinions of my employers and may not even reflect my own.

Last updated: November 14, 2019


