
Rutgers ECE 434, Spring 2019 Prof. Maria Striki

Project 2: LINUX Inter Process Communication and Signals

Issue Date: Monday 03-11-2019, Due Date: Sat March 30th Monday Apr 8th 2019,

Total Points (20 + 20 + 10 + 40 = 90 points)

Problem 1 (Arbitrary Process Tree generation) (20 points)
Write a program which generates arbitrary process trees from a given input file. Your program is based on

a recursive function which will be called for every tree node. If the tree node has children, the function

will create them and will wait until they are terminated. If the tree node does not have children, the

function will call sleep()with a predefined argument.

The input file contains the description of a tree, node after node, starting from the root. For every node,

you must specify its name, the number of children and the names of the children. You must decide how to

represent the nodes and their names in your input file so that they can be uniquely mapped to the tree

under consideration. For instance, how to distinguish between DFS vs. BFS nodes?

Scheme 1: Example of a process tree.

Under one scenario, as an example, a process tree may be described as follows:
A 2 B C
B 1 D
D 0
C 0

Remark 1: Ensure you do not generate more processes than what your system can handle. So, please

justify in your report, what the size of the process tree you selected is and why.

Remark 2: Every tree node is defined by struct: tree_node, which contains the number of children

(children_no), and the name of the node and pointer to the area where contiguous children_no structs

are placed, one for every child node. Remark 2 helps understand how to represent the remaining tree

when stored in the memory of an internal process tree node. You should not pass part of the original file

as “file”, but pass only the amount of information required stored as linked list or some other structure.

Remark 3: Write a function that reads the tree from file, constructs its representation in memory and

returns a pointer to the root: read_tree_file (const char *filename). Also write a function that

runs the tree starting from root and prints its elements: print_tree (struct tree_node *root).

Remark 4: You must build the process tree, not just a tree data structure. However, for every process

tree node you are building you must pass on the information of the remaining sub-tree recursively. Also,

you must print out the tree after creation using the process tree. For this, you will need some form of IPC

for interaction across processes (go up or down the tree). You may choose to print in a recursive fashion.

Question: What is the order of appearance of start and termination messages from processes and why?

Solution:

Problem 2: (Handling and Sending Signals) (20 points)

Expand the previous problem so that the processes can be handled via the use of signals, in order to print

their messages in a depth-first fashion. Every process creates its own children-processes and suspends

execution until it receives the appropriate resume signal (SIGCONT). When a process receives SIGCONT

it prints the corresponding message and activates its child processes one after another. It monitors and

waits for their terminations and prints the corresponding diagnostics. The process evolves recursively,

starting from the root process (what type of traversal?). The initial process of the program sends

SIGCONT to the root process, after displaying the process tree to the user.

In the example of scheme 1, the activation messages are printed in order: A, B, D, C

Remarks: A process suspends its execution with the use of sys call: raise (SIGSTOP) (if raise does

not work check to find what alternative system call you may equivalently use). But before it does so, it

validates that all the children have suspended their execution as well. This validation is conducted by

means of a function named: wait_for_children(). To build the latter you may use function

explain_wait_status() following sys call wait() or waitpid().

During your program execution you may send manual messages via the use of instruction kill from

another window. You may use the command: strace –f –p <pid> to monitor the system calls

coming from process <pid> and all its children processes.

Questions:

Q1: We have used sleep() in the previous parts to synchronize processes. What is the advantage of the

use of signals?

Q2: What can the role of function wait_for_children()be? What benefit does it ensure and what

potential problem could its omission bring about?

Solution:

Problem 3: (Parallel calculation of numerical expression). (10 points)

Expand the program of Problem 1 for the purpose of computing trees that represent numerical

expressions. For example, the tree of schema 2 represents the expression: 10 x (5+6).

Scheme 2: Process tree for numerical expression: 10 x (5+6).

The provided input files and hence the process tree that are derived have the following limitations:

1) Every internal node has exactly two children and represents one of the two operands: “+” / “*”.

2) The name of every leaf node is an integer number.

The evaluation of the expression will be conducted in parallel, creating one process for every tree node.

Every leaf process return to the parent process the numerical value that corresponds to it. Every non-leaf

process receives the evaluation of the sub-expressions coming from its children processes, calculates the

value corresponding to its own node and returns the value to its parent process. The root process returns

the final result to the initial process of the program, which prints/displays it on the screen.

Test Output: Among the random expressions you are to generate, you should also generate the following

and provide the proper output:

10 x [(2 x (5+6)) + (3 x (2+3))] x [[(4 x (8+5)) + (5 x (2+4))]

Remark 1: You must use Linux pipes for the communication between parent and children processes.

Every process must monitor its children for their termination and print the corresponding diagnostic in

order to detect programming errors in a timely manner. Intermediate printouts facilitate debugging.

Remark 2: You have the option to utilize different forms of IPC every time if you want. An obvious

method for IPC is pipes. Can you identify more? Do you want to use them? If not, why not?

Question: How many pipes per process do we need to use in this problem? Would it be possible for every

parent process to use only one pipe for all the children processes? Or in general, can we use only one pipe

for every numerical operand?

Solution:

Problem 4: (Project 1 – Problem 1 with Signals). (40 points)

This problem is a slight elaboration of your Project 1- Problem 2 and Project 2 - Problem 1.

Please expand your Project 1/Problem 2 – Part C to do the following tasks: (16 pts)

a) (4 marks) The IPC is now to be conducted with signals and signal handlers (no pipes or shared

Memory). Review the available signals and find how to pass information from the parent to the

child and vice versa through signals/signal handlers. Rewrite and compile the code appropriately.

b) (12 marks) Your parent process becomes now very impatient…. It does not want to wait for any

child process longer than 3+6 x ll seconds (where ll is iteration of computation from the parent to

the farthest descendat: ll=0 at the leaf processes and increases by one, once we go to the

immediate parent level). If a child process takes longer than this, do not incorporate its

contribution to the final result if the child process has a faster responding sibling.

 What should the contribution get substituted with in each case?

The parent should “mark” the slow behaving processes and “notify” all its children processes (if

any) about “who” this misbehaving sibling process(es) is(are). Once a child process is notified of

a misbehaving sibling process, it attempts to “suspend” it EITHER by sending the corresponding

signal OR by sending a custom signal with a customized handler that emulates/executes

suspension but also updates a data structure that contains the pid of the process which executed

the handler (if feasible). At time 3 + 6 x ll + 2 seconds, the parent checks on the status of the

misbehaving child(ren) and if implemented, on the updated data structure of the reporter siblings.

If the status of the misbehaving child(ren) is suspended, then the contribution of that child is not

incorporated to the parent’s result indeed. If in addition, the data structure of the reporter siblings

is populated with more than 2 elements then the parent additionally terminates that child. If the

status of the misbehaving child is not yet suspended, then at time 3 + 6 x ll +4 seconds, the parent

checks for an actual contribution from that child and sends it to its own parent, otherwise, as

discussed, the contribution of this child is not considered. However, the parent does not terminate

the child. When the root of the overall tree is reached, print the count of the terminated processes

and the count of the live processes. Then, have the root invoke sys call wait to release resources

of live processes.

Question: How many process resources will be released? Why?

Solution:

Please expand your Project 2/Problem 1 to do the following tasks: (24 pts)

Change the random process tree you have used before to a random tree of threads instead.

Therefore, modify your code to generate threads instead of processes. Can you actually create a

tree of threads? Or if not, can you find a way to make threads have such a relationship by having

one thread hold the proper info w.r.t. to the remaining threads (i.e., other threads ids, children

threads ids, parent threads ids, etc etc)?

c) (24 marks) The user running this program got very impatient while waiting for all these

calculations to be conducted, and decides to be done with the whole experiment by playing

around with various signals and/or interrupts, and in particular with the following: i) CTL-C, ii)

SIG_QUIT, iii) SIG_STOP, iv) SIG_STP, v) SIG_ABRT, vi) SIGTERM, vii) SIG_KILL, viii)

SIG_EGV, viii) select your own interrupt with your customized handler.

Experiment 1) (4 pts) Send manually the above sequence of signals to the process (main

function), one signal every time. Record the messages you get on the screen and describe the

behavior of your program. One way to check on the status of your threads (if your process is still

alive) is to ask the threads send printouts with their id and status. Those that do are still alive and

unblocked.

Experiment 2) (6 pts) Now send the above signals to a specific thread id (have the process or

another thread send the signals to a specific thread, one by one every time and observe.

Experiment with each signal at a time, record the messages you get on the screen and describe the

behavior of your program. Does your program completely stop at all times, for all signals? Does

one thread only get suspended or stopped or all the threads or process do? Report your findings.

One way to check on the status of your threads (if your process is still alive) is to ask the threads

send printouts with their id and status. Those that do are still alive and unblocked.

Experiment 3) (14 pts) Modify and run your program so that it accommodates the options

below: Choose three threads to send those signals to from another thread. Omit this time around

SIG_STOP and SIG_KILL. The thread will be sending all the six signals to each other thread 5

times in a row (write a loop of 5 iterations in which you will be sending all 6 signals in every

iteration). The thread that receives the signals will do the following:

1) (4 pts) Has defined its own handler for every signal that mainly updates the thread status,

prints on screen the number of incoming signal, the id of the sender, the receiver, and if

possible the number of times this signal currently sent. Use function signal() to run the

handler, and do not re-install the handler within signal. What is the behavior of your

program? How many times is each signal in each iteration going to run?

2) (4 pts) Now do exactly as above, use function signal() for the handler but re-install

the handler within the handler. Run the program as prescribed and printout the results.

Are there any differences in execution 2) with execution 1)? Describe in detail, provide

evidence, justify why.

3) (6 pts) Now do exactly as above, also add in the handler of every signal, along with the

rest of the instructions, a system call sleep(3). However, you are to use function

sigaction () to define and install the handler. Set the sa_mask to block the last

three signals (SIG_ABRT, SIG_EGV, your own custom signal). What do you observe

when running your code now? What are the differences? Can you justify your differences

by explaining how sa_mask operates? Run the program as prescribed and printout the

results.

Please provide detailed code for this problem (you have ample degree of freedom) and a very thorough

report with your results and your justifications of the results.

Solution:

What to turn in:
 C files for each problem
 A makefile in order to run your programs.
 Input text file (your test case)
 Output text file (for your test case)
 Report: Explain design decisions (fewer vs. more processes, process structure, etc.).

Elaborate on what you have learned from each problem. Answer the question(s) below
each part/subproblem. Also, please consider providing a very detailed report, as along
with your C file deliverables, it corresponds to a substantial portion of your grade.

Logistics:
 For Project 2 please work in groups of 4-5 students.
 You are expected to work on this project using LINUX OS
 For those that do not have access to LINUX in their laptop, you may use one of the

solutions posted online regarding how to get access to a LINUX platform.
 Make ONE submission per group. In this submission provide a table of contribution for

each member that worked on this project.
 Only students that may be left without peers will be allowed to work in groups of 2 or 3.
 Do not collaborate with other groups. Groups that have copied from each other will

BOTH get zero points for this project (as a warning) no matter which copied from
another, and will also incur more substantial consequences.

APPENDIX

Useful Links:

https://www.gnu.org/software/libc/manual/html_node/Generating-Signals.html#Generating-

Signals

https://www.gnu.org/software/libc/manual/html_node/Pipes-and-FIFOs.html#Pipes-and-FIFOs

https://www.gnu.org/software/libc/manual/html_node/Creating-a-Process.html#Creating-a-

Process

https://www.gnu.org/software/libc/manual/html_node/Process-Completion.html#Process-

Completion

https://en.wikipedia.org/wiki/Depth-first_search

Useful Auxiliary Functions and Definitions

explain_wait_status ()

Example:

https://www.gnu.org/software/libc/manual/html_node/Generating-Signals.html#Generating-Signals
https://www.gnu.org/software/libc/manual/html_node/Generating-Signals.html#Generating-Signals
https://www.gnu.org/software/libc/manual/html_node/Pipes-and-FIFOs.html#Pipes-and-FIFOs
https://www.gnu.org/software/libc/manual/html_node/Creating-a-Process.html#Creating-a-Process
https://www.gnu.org/software/libc/manual/html_node/Creating-a-Process.html#Creating-a-Process
https://www.gnu.org/software/libc/manual/html_node/Process-Completion.html#Process-Completion
https://www.gnu.org/software/libc/manual/html_node/Process-Completion.html#Process-Completion
https://en.wikipedia.org/wiki/Depth-first_search

Example of handling SIGCHLD

Auxiliary Functions and Operations on Trees and Tree Nodes

How to write a MakeFile (Example):

