
Assignment 2: Analysis of Algorithms, Sorting

In this assignment, you are forbidden from using standard APIs that would otherwise implement data

structures or sort functions or etc. Any data structure used must be programmed on your own and

submitted with the assignment. Do not use java.util.Collections or the C++ STL or etc. unless otherwise

stated.

You will push all of your solutions to the Assignment 2 repository through the Github Classroom.

Organize your repository in such a way that it contains:

Root – Assignment 1 directory

- Problem 1 directory

o Problem 1 code…

o Problem 1 PDF…

- Problem 2 directory

o Problem 2 code…

o Problem 2 PDF…

- …etc. for all numbered problems in this assignment set.

Note: We have removed the requirement for a main file.

Note: Do not include binaries / executables / bin folders / etc. Only upload the .java / .cpp / .py / .h /

etc only.

Note: You are graded on directory structure.

There is no restriction on the programming language that you use.

For the problems, you will be implementing your code as an API through which the graders will make

function calls.

Include a README.md file for the GitHub repository that has your Name as the title and a description of

what is inside the repository, generally.

!! INVITATION LINK: https://classroom.github.com/a/q8wGWa8u !!

For anyone new to Github, we encourage you to use Github Desktop as a simple GUI for interacting:

https://help.github.com/desktop/guides/getting-started-with-github-desktop/

For people who want to be more advanced and up to industry standards, you can use the Git command

line:

https://git-scm.com/downloads

A very barebones introduction to the command line (very readable, I recommend it):

http://rogerdudler.github.io/git-guide/

https://help.github.com/desktop/guides/getting-started-with-github-desktop/
https://git-scm.com/downloads
http://rogerdudler.github.io/git-guide/

1. Sorting - 1

a. In the lecture, we found that our compare-based sorting algorithms Mergesort and

Quicksort are often bounded by 𝑂(𝑁𝑙𝑜𝑔2(𝑁)), where 𝑁 is the size of the input array. In

this problem, we want you to implement a sorting algorithm that does not compare

elements in an array to each other. Instead, group digits by their order in a numeric

sequence to sort them. Take for example: [12 9001 5]. Continually re-order these by

digit sequence until they end up sorted. Preserve the list order when the digits of

multiple entries are equal. Example below: (note that your algorithm does not have to

work like this exactly, but needs to avoid comparing elements of the array to each

other and must sort by ranking digit sequences):

i. [12 9001 5] --> Initial input

ii. [9001 12 5] → Sorted by 1,2,5

iii. [9001 5 12] -> Sorted by 0,0,1

iv. [9001 5 12] -> Sorted by (0,0,0)

v. [5 12 9001] -> Sorted by (0,0,9)

b. For this problem, include only a main file that contains the function for this sort. The

sort will be called Problem1Sort, and is called with Problem1Sort(int[] a, int arraySize).

i. The first parameter int[] a is an array to be sorted.

ii. The second parameter, int arraySize, is the size of the array int[] a.

c. In a separate PDF, give an analysis of the run-time of your algorithm. You may show the

proof however you like, either through explanation or mathematics. If you are not using

math, your explanation should be convincing and short, with exact pointers to the cost

of operations. You need to include the exact code and highlight where the bottleneck

is – i.e. which operation is taking the longest in the sort and what is its Big-Oh notational

runtime? PDF requires the code and the explanation.

d. Is your sort stable? Why? Give this answer in the PDF and show where it remains stable

in your code snippet.

e. Update your sorting algorithm to use constant extra space. Highlight this change in the

code snippet and show why it uses constant extra space compared to the old one.

i. Depending on whether your algorithm uses extra space, answer the below

depending on your implementation:

1. If your algorithm already uses constant extra space, what major change

to the algorithm would using O(n) extra space provide?

2. If your algorithm did not use constant extra space, what major change

to the algorithm does using O(1) extra space provide?

2. Sorting -2

a. Implement an in-place merge sort algorithm that does not use O(N) extra space to

merge the two halves. Your requirements:

i. For this problem, include only a main file that contains the function for this

sort. The sort will be called mergeSort, and is called with mergeSort(int[] a, int

arraySize).

1. The first parameter int[] a is an array to be sorted.

2. The second parameter, int arraySize, is the size of the array int[] a.

b. Produce a code snippet in a new PDF, Problem 2.pdf. Write an explanation (or

mathematically prove) the complexity of your in-place mergesort for the best and worst

case. Highlight, in the code, which operations cause the bottleneck for in-place

mergesort in the best and worst case.

i. Is the sort stable? Highlight in the code segment and explain why.

3. Sorting – 3

a. Implement 3-way Quicksort for a linked list. Define these methods for the class:

i. LinkedList(); -- constructor

ii. add(int a); -- Adds a number to the linked list

iii. printList(); -- Prints the current list contents to console as comma separated

values (“1,2,3”

iv. quicksort(); -- Runs 3-way quicksort.

b. Your requirements for quicksort:

i. It must shuffle the linked list. Note: there is no restriction on how you shuffle

the list. It is up to you. We will test runtime for different insertions to validate

the shuffle.

ii. It must print out every comparison and what is being compared.

iii. It should print out every swap.

iv. It should print out the current list after finishing a partition (pivot is placed in

final location).

v. It should initially use median of 3 selection for the pivot in the first partition.

vi. For this problem, include only the class files / code files. No main function file

is needed.

4. Problem Solving - In this problem set, include a single main file that contains functions that

can be called from a main function. For this problem, you are allowed to use external sort

functions and data structures from the STL or Java.util.etc.

a. Assume you have an array of size 𝑁 containing integers. Your client asks you to order

the array in terms of local maxima and local minima. Example: {a b c d e …}, a>=b, b=<a

& b<=c, c>=d, d=<c & d=<e, e>=… etc. Program an algorithm that orders an array of

random numbers into a set of maxima and minima.

i. Example: [8 9 0 3 1]

ii. Your function should be called with Problem4A(int[] a, int arraySize) from the

main file.

1. The first parameter int[] a is an array to be sorted.

2. The second parameter, int arraySize, is the size of the array int[] a.

iii. Include a PDF: Problem 4.pdf. Highlight the code snippet for your algorithm.

What is the overall complexity? Give an explanation or a proof. Explanation

requires references to the code with highlights of specific lines.

iv. Is there an linear time solution for this problem? Why or why not? Include your

answer in Problem 4.pdf.

